Polyalkylene Glycols as Performance Wear Lubricant Additives in Straight Oil

Synthetic Polymeric Technology as Performance Lubricity Additive to Straight Oil Metalworking Fluids
Key Messages

• Lubricant Base Groups Evolution
• Polyalkylene Glycol Synthesis
• Metalworking Fluids Concept
• Study Base
• Formulations Information
• Experimental Procedure
• Results & Discussion
• Findings
Lubricants by Group

- Chemistry purity
- Chemistry stability
- Better VI – Viscosity Index
- Additive performance
- Excellent cost-benefit

Source: API – American Petroleum Institute
Typical Polyalkylene Glycol (G-V) Synthesis

Types of PAGs by chemical family

EO Homo-polymers
PO Homo-polymers
EO/PO Block Copolymer
EO/PO Block Copolymer
EO/PO Random Copolymer

Note: PAG - Polyalkylene Glycol | EO - Ethylene Oxide | PO - Propylene Oxide
Oil Soluble Polyalkylene Glycol

Attributes

Proposed as both a base fluid and a performance enhancing additive in lubricants. Some examples of their use include:

• Friction modifiers
• Deposit control
• Viscosity boosters
• Additive solubility aid in Group III and IV hydrocarbon oils
• Lubricity aid and cleanliness additive in water based metalworking fluids and neat oils
• Rheology modifier in greases
Metalworking Fluids

Concept

Metalworking Fluids are Engineering Materials that optimize Metalworking Processes

<table>
<thead>
<tr>
<th>Predominance</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>Straight Oils</td>
<td>Petroleum or vegetable oil that is used without water as component.</td>
</tr>
<tr>
<td></td>
<td>Soluble Oil</td>
<td>Mineral oil base aqueous emulsions, forming milky emulsion.</td>
</tr>
<tr>
<td>Water</td>
<td>Semi-synthetic</td>
<td>Mineral oil base emulsions, forming opalescent emulsion.</td>
</tr>
<tr>
<td></td>
<td>Synthetic</td>
<td>Clear and transparent solution. Basically, formulated with Polyalkylene Glycol as lubricant.</td>
</tr>
</tbody>
</table>
Boundary antiwear additives

Characteristic & Attributes

Main attribution and characteristics:

1. Polar molecules
2. Metal surface adsorption
3. Adhesive wear and metal contact prevention.

Source: W. Bruce, Robert (Edited by), 2nd Edition - Handbook of Lubrication and Tribology
Study Base

• Study Objectives:
 screen oil soluble polyalkylene glycol behavior

• Fluids Proposal:
 naphthenic mineral oil base $V_{40} = 90$ cSt

• Additive Proposal:
 lubricity improver – boundary antiwear additive
Experimental Procedures

Modified ASTM D4172 - 94(2016)

Modified ASTM D4172 - 94(2016);

1 – Comparative Conditions:
1725 +/- 60 RPM; 60 kgf; 30 +/- 1 min; Load;

2 – Precision:
Repeatability - Results obtained by the same operator with the same apparatus under constant operating conditions;

3 – Results:
Average the three readings and report as scar area in square millimeters, using microscope and software for area reading.

Note: ASTM - American Society for Testing and Materials
Results & Discussion
Soluble Oil Polyalkylene Glycol

Additives Screened

<table>
<thead>
<tr>
<th>Additive</th>
<th>Chemical Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO-HBN90</td>
<td>Naphthenic Mineral Oil Base $KV_{40} = 90$ cSt</td>
</tr>
<tr>
<td>A1-OSP-32</td>
<td>Oil Soluble Polyalkylene Glycol – 32 cSt @40 °C</td>
</tr>
<tr>
<td>A2-OSP-68</td>
<td>Oil Soluble Polyalkylene Glycol – 68 cSt @40 °C</td>
</tr>
<tr>
<td>A3-OSP-460</td>
<td>Oil Soluble Polyalkylene Glycol – 460 cSt @40 °C</td>
</tr>
<tr>
<td>A4-OSP-680</td>
<td>Oil Soluble Polyalkylene Glycol – 680 cSt @40 °C</td>
</tr>
</tbody>
</table>

Note: These are typical properties, not to be construed as specifications.
Formulation Information

Straight Metalworking Fluid

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Function</th>
<th>PAG Test Formulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naphthenic Mineral Oil KV 90 cSt</td>
<td>Lubricant Base</td>
<td>95-100%</td>
</tr>
<tr>
<td>Oil Soluble Polyalkylene Glycol (OSP)</td>
<td>Boundary Lubricant Additive</td>
<td>1-5%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

Note: These are typical properties, not to be construed as specifications.
4-Ball Comparison

Note: These are typical properties, not to be construed as specifications.
Note: These are typical properties, not to be construed as specifications.
Viscosity

KV\textsubscript{100} influence

Note: These are typical properties, not to be construed as specifications.
Viscosity Index

Note: These are typical properties, not to be construed as specifications.
Main findings

• In 4-ball wear tests, oil soluble polyalkylene glycols exhibited antiwear properties in Naphthenic base oil.

• The antiwear performance was excellent for oil soluble polyalkylene glycols of different molecular weight and viscosities.
References

[6] wwwjmpcom/support/help/Compare_Mean.shtml#81061

Authors contribution:

Camila da Silva
Dow DIS LAA R&D Technician
ccdasilva1@dow.com
Thank You

Eduardo Lima, M.Sc.
Latin America Technical Service Specialist
Dow Industrial Solutions

phone: +55.11.5188.9949
mobile: +55.11.9645.0547
e-mail: eglima@dow.com

NOTICE: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries. Dow assumes no obligation or liability for the information in this document. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO WARRANTIES ARE GIVEN; ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.